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ABSTRACT 

Non-Gaussian primordial fluctuations for structure formation may be generated dur- 
ing the inflationary epoch from the nonlinear interaction of two scalar fields with gravity. 
Semi-analytical stochastic ation calculations are described for nonlinear long-wavelength 
evolution in 3+1 dimensions. Long-wavelength fields are governed by a single equation, the 
separated Hamilton-Jacobi equation. Typically, non-Gaussian fluctuations arise when the 
scalar fields pass over a sharp feature in their potential surface. The subsequent evolution 
of these primordial fluctuations are calculated as scales reenter the horizon during the 
radiationcdominated and matter-dominated eras of the cold-dark-matter scenario. Contour 
maps for the linear density perturbation as well as the gravitational potential are displayed 
at the present epoch. In qualitative agreement with observations, one can construct models 
with sheet-like structures on the scale of 25h-‘Mpc. The cleanest test of non-Gaussian 
fluctuations will hopefully occu in the near future from large angle microwave-background 
anisotropy experiments. 
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I. INTRODUCTION 

With the decline of the simplest cold-dark-matter (CDM) scenario,’ it is impera- 
tive that theorists propose alternative models wbicb can be compared with cosmologi- 
cal observations.‘-s Here, I describe a variation of the inflation model which yields non- 
Gaussian primordial fluctuations. This model may be tested in the near future if the Cosmic 
Background Explorer satellite’ (COBE) measures the microwave-background temperature 
anisotropy. 

Even with the difliculties in accounting for large scale structure in the Universe, it is still 
reasonable to retain the infiationary scenario. Redshifts of IRAS galaxies’ and their inferred 
peculiar velocities indicate that the Universe is at critical density,sJs 0 = P/Pc+it = O.EkO.3. 
This result gives support to infiation whose most outstanding prediction was that fl = 1. 
However, one must attempt to modify or improve the scenario. For example, one may 
conjecture a set of primordial fluctuations that are richer than scale-invariant Gaussian. 
I will describe a chaotic inflation model that gives non-Gaussian fluctuations which are 
basically scale-invariant.“*” 

Non-Gaussian fluctuations for structure formation have been advocated by numerous 
researchers. Peebles’3v1’ has suggested that the distribution of galaxies is not adequately 
described by a Gaussian process. Cosmic string models’s were among the first cosmological 
scenarios requiring non-Gaussian statistics. It has been recently shown that their signature 
is obscured by evolution of the string network, Is although it is possible that the initial 
conditions for cosmic strings are more complicated than originally anticipated.‘l Late-time 
phase transitions,‘s extended inflation’s and textures”’ are additional models whose statis- 
tics may not be described by a Gaussian distribution. In the context of inllationary models, 
Allen, Grinstein and Wise” as well as Kofman and Liide’s constructed axion models with 
non-Gaussian fluctuations. Bardeen used two scalar fields to produce a ‘Gaussian-squared’ 
model that had interesting cosmological consequences.s3 

There are three essential ingredients to the inflationary scenario. Firstly, a scalar field 
with potential V(4) models the decay of the cosmological constant. Secondly, gravity is 
crucial in order to account for the expansion of the Universe. Finally, scalar field quantum 
fluctuations are necessary to produce inhomogeneities that will eventually produce structure 
in our Universe. One should view the inflation model as a microscope that magnifies quan- 
tom fluctuations at the smallest imaginable distance scales (less than the Planck length) 
to scales that are cosmologically observable. One of the problems with linear perturbation 
theory was that there was no short distance cutoff. This gave the illusion that one could 
extrapolate to arbitrarily small distances. However, nonlinearities must be important at 
some scale. 

Non-Gaussian fluctuations would be the signature of nonlinearities in the inflationary 
scenario. Their calculation is problematic because one requires a formalism that governs 
the evolution of quantum noise with gravity. Ideally, one needs a quantum theory of the 
gravitational field.“*‘s In order to bypass this very severe difficulty, I will use three tricks: 

(1) Long-wavelength quantum noise behaves essentially classically, and it may be de- 
scribed using classical random fields in a process termed stochastic inflation.‘s-33 Using the 
yd$-Dewitt equation, one may show that quantum gravity corrections are typically 

(2) The classical nonlinear evolution of long-wavelength scalar fields and gravity is tractable.s1J4 
When the wavelength of a fluctuation exceeds the Hubble radius, different spatial points 
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are no longer in causal contact, and they evolve as independent homogeneous universes. 
One may safely neglect second order spatial gradients in the action for scalar fields and 
gravity. Nonetheless, one must carefully join the independent spatial points to make one 
universe. 

(3) The long-wavelength equations may be solved analytically when the logarithm of the 
scalar field potential is linear:’ ln V(4j) = Cr a&h, where the ok are constants. More 
complicated potentials may be approximated by joining various linear In V potentials to- 
gether. In this way, one may produce models that yield non-Gaussian fluctuations that are 
consistent with current microwave-background anisotropy limits. 

Originally, Ortolan, Lucchin and Matarrese 3s,3s had suggested that non-Gaussian fluc- 
tuations could arise from stochastic inflation if a single scalar field interacted through an 
exponential potential. However, using exact solutions of the improved Fokker-Planck equa- 
tion, Salopek and Bonds’ showed that such scalar field fluctuations were non-Gaussian only 
on scales much larger than OUT observable Universe (see also refs. 37 and 38). In addition, 
Bardeen and Bublik*s and others ss*‘O showed that Gaussian fluctuations were generic in 
our observable Universe if a single scalar field interacted through a quartic potential. 

with 
ln Sec. II, I present the long-wavelength equations for Einstein gravity interacting 
scalar fields. In an elegant application of Hamilton-Jacobi theory to general relativity, 

one may solve this system exactly. Quite remarkably, the full nonlinear dynamics of long- 
wavelength fields is contained in a single equation, the separated Hamilton-Jacobi equation 
(SHJE). It is useful for several reasons. The equation is truly covariant in that it makes no 
reference to either the time parameter nor to the spatial coordinates. When one performs 
calculations, it is not necessary to make any gauge choice. Exact solutions of the SHJE are 
given for the case when the scalar fields interact through an exponential potential. 

In Sec. III, I describe the initial conditions for the long-wavelength problem. They 
are determin ed by short-wavelength quantum fluctuations that began in the Bunch-Davies 
vacuum.” They will be assumed to be Gaussian. ln Sec. IV, I consider several models 
where non-Gaussian fluctuations arise when the scalar fields pass over a strong feature in 
the potential surface. For multiple scalar fields, the method of calculation is based on some 
analytic tricks rather than brute force numerics. Rather than solve the evolution equations 
through Runge-Kutta integration schemes, I employ Hamilton-Jacobi methods where one 
introduces new canonical variables. 

In Sec. V, I consider the evolution of these fluctuations as they reenter the horizon 
during the radiation and matter-dominated eras. In CDM cosmology, non-Gaussian fluc- 
tuations may be readily evolved using the transfer function together with a fast-Fourier 
transform. Contour maps of the density field and the gravitational potential are given at 
the present epoch. 

shed 
A summary and a set of conclusions are given in Sec. VI. The models presented may 
some light on the problems of large scale structure in the Universe. Hopefully, large 

angle cosmic microwave-background (CMB) 
definitive tests of these scenarios. 

anisotropy experiments will provide the most 

II. LONG-WAVELENGTH EQUATIONS FOR 
SCALAR AND GRAVITATIONAL FIELDS 
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The inflation scenario will be modelled using Einstein gravity together with n scalar 
fields, +j, which self-interact through a potential, V(#j). In most models, gravitational 
radiation is not dynamically important, and I will therefore assume an isotropic metric 
with inhomogeneous lapse function N(t, z.) and scale factor en(Q), 

d2 = -N’(f, z)& + e ~=(-((dz’) + (dzy’ t (f&3)‘). (2.1) 

The inhomogeneous Hubble parameter, H(t,z) s b/N, describes the expansion rate at 
each point in the Universe. In the long-wavelength approximation, one assumes that the 
physical wavelength of all inhomogeneities are larger than the Hobble radius, H-‘. One 
caa then safely neglect all second order spatial gradients in Einstein’s equations, but it is 
necessary to retain first order spatial gradients, otherwise the models are homogeneous, 
which are of limited applicability. 

Because I wish to employ Hamilton-Jacobi methods, it is useful to define momenta, 
ra, &, conjugate to n(t, z) and the scalar fields, (ref. 31, Sec. IV), 

4* 
&IN = --e 

3m; 
-%ra = H, 

Jj)jlN = c-~~&. 

For each spatial point, the evolution equations,3’ 

(2.26) 

lia/N = --$e-3.(r.)z + C 3e-3~ (,%)z , 
L 

and the energy constraint 

0=7+)22,* ~e-yry t -$ +-3y+ + ewq~,), (2.2e) 
7J 

for long-wavelength fields are identical to those of a flat, homogeneous Universe. The new 
ingredient is the momentum constraint, 

0 = l-l&) zz -; .p (e-3pcr”),i + -pv*,i, (2.25) 
L 

which connects diRerent spatial points through a tint order gradient. (In the above equa- 
tions, Newton’s constant, G = nap’, 
1.221 x 10’“GeV.) 

is expressed in terms of the Plamk scale, mp = 

A. HAMILTON-JACOBI THEORY FOR 
GENERAL RBLATMTY 
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In a novel approach to numerical relativity, one may successfully apply Hamilton-Jacobi 
theory to the solution of long-wavelength fields. ll,lz I will describe how to solve the long- 
wavelength cosmological system when the logarithm of the potential is linear. By itself, this 
system is not suflicient for constructing non-Gaussian models. However, one can construct 
more complicated potentials by joining several linear InV regions together (Sec. III, IV). 

I will now give a short review of Hamilton-Jacobi theory for long-wavelength fields. 
The form of Hamilton’s equations is preserved if one employs a generating functional S 
to transform the variables (a(t, z), +(t, z), &(t, z),& (t, z)) to new canonical variables, 

(dj(4 z)9*“‘(0)): 

ryt, 2) = 
6‘S 

&$t, 2)’ 
#~((t,z) = 6s 

64jtt7z) 
*bi(t,z) = - -6s 

J+jj(O)' 
(2.3) 

There are 2n new canonical variables which are 2 less than the initial number. For general 
relativity, explicit time dependence of S is not assumed because one of the field variables 
becomes the time variable. In this paper, the generating functional S will depend explicitly 
on half of the old variables and half of the new ones, S E S(a(t, z), bj(t, 2); ~j(t, z)) 

Dirac’s found it useful to introduce the notion of strong and weak constraints. To 
illustrate the meaning of these expressions, I will consider a trivial example. The function 
f (z, y, z) = zs + y’ + zs - 1 vanishes weakly only lf the the variables, z, y, z are constrained 
to lie on the unit sphere, z = sine cos4, y = sin0 sin+, and I = cos& where 0, C$ are spherical 
angles. However, the constraint vanishes strongly when expressed in terms of the spherical 
angles because It yields zero f(8,$) E 0 for all values of &and 4. Of course, one has lost 
one degree of freedom in going from the weak to the strong condition. 

In the Hamilton-Jacobi theory for gravity, one insists that the Hamiltonian density, 
eq.(2.2e), vanishes strongly when expressed in terms of the new canonical variables: 

-2*=-3P(““) [6ayfz)]3 + T ieC-3a(t*r) [,,$, .,]I + e3a(‘s’)V(qi(t, z)) E 0. 
3mg 

(2.4) 

As a result, the new variables are independent of time because the Hamiltonian, Ho,,, = 
I d3rNX(z) generates time evolution through Poisson brackets, i.e., 

dj = {Jjj, Ham} = 09 & = {A, If,,) = 0. (2.5) 

However, the new variables may be spatially dependent, C& = &(z), r&i G r”(z). 

Solving the full Hamilton-Jacobi equation, eq.(2.4) plus second order spatial gradients, 
is extremely dlflicult, and hence one must resort to approximation techniques. The long- 
wavelength approximation is an elegant extension to inhomogeneous fields of homogeneous 
minisuperspace. Because there is no causal contact between spatial points, one may write 
the generating fmctional as a sum, 

s-2 & 

I 

Ze3~(““)H(~j(t~ S!);Jj(Z)), 
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over the independent evolving spatial points; the Hubble function H E H(4j; ~j) has no 

explicit time or spatial dependence, except through the fields, #j(t, z), &(z). 

The long-wavelength equations reduce to: 

p = 2 -pgp + *;:Jy 
‘p 

(2.6~) 

where & = J*(z), & E T”‘(Z), (2.66) 

4 3u(t,r)- s+(t,z) = -=e 
aH 

a4j’ 

+A(,)= mbe34"=)?5. 
4* abj 

The fist equation, the separated Hamilton-Jacobi equation (SHJE), is just the energy con- 
straint whereas the second is the momentum constraint .34 The last two equations describe 
how the original variables evolve in time which can be taken to be Q for simplicity. 

In essence, a single equation, the SHJE governs the nonlinear dynamics of the long- 
wavelength gravitational system. It is remarkable in that it does not refer explicitly either 
to the time hypersurtace nor to the spatial coordinates although it describes both of them. 
By considering eqs.(Z.Zb,c,e), the n evolution equations and the energy constraint for ho- 
mogeneous minisuperspace are typically written as 

G&!%) +3ligp+ 
BV 
G = O, 

(2.76) 

As written, they are difllcult to solve because one must make a arbitrary choice of lapse 
function, and in may cases, one is content to choose synchronous gauge, N = 1. However, 
the beauty of Hamilton-Jacobi theory is that one need not make a choice of lapse func- 
tion. One solves only a single equation rather than n simultaneous ones. In addition, the 
momentum constraint (2.6b) is easy to solve. 

In summar;, the long-wavelength problem may be solved by finding a single solu- 
tion H G El(4j; ~j) of the SHJE, eq.(2.6a) which depends on n independent parameters ~j. 
These parameters are generally spatially dependent, although they are independent of time. 
Moreover, n additional constants of integration, ~41 G &i(z), may be found by d&rem 

tiation of the Hubble function through eq.(2.6d). Th e set of parameters, (k(Z),&(I)), 

which are interpreted as new canonical variables, are constrained by the momentum con- 
straint, eq.(2.6b), which is readily solved. Taking a as time, the evolution of the system, 
$j E #j(a, Jj(Z),&(z)) is found by inversion of the algebraic equation (2.6d). 

B. EXACT SOLUTION OF THE 

6 



SEPARATED HAMILTON-JACOBI EQUATION 

If the scalar fields interact through a potential whose logarithm is linea~,‘~ one may 
write down a complete solution of the SHJE. 34 As a result, one may give analytic expressions 
for the evolution of the fields (4 1, s as a function of time Q. I will be content only to # ) 
state the results. More details may be found in ref. 34. 

For two scalar fields, consider a potential of the form, 

(2.8) 

The parameter p controls the steepness of the potential, I3 is the angle between the 41 axis 
and a line of uiform potential, and VO is the value of the potential at the origin $1 = $1 = 0. 
Ifp > 1, then the potential (2.8) can be used to describe an inflationary epoch. A complete 
solution of (2.6a) which depends on two arbitrary parameters, b and m, is, 

H(hvhp,8;b,4 = (= 8*7w /zeq[-E(- +lshIp+ ~2cose)]cosqu) 

where u is a function of 6, m, 41 and 42 which is defined implicitly through, 
(2.90) 

g [(ease - mShe)& - (mCOs8 + She)& - b] = --& x 

[‘+‘(3p- 1) t 3pt hIcosh(u) - sinh(u)+n~(3p- 1) + 3~11. (2.96) 

(In the notation of Sec. A, b = &, m = A.) By rotation of fields, 

4; = hcose t &sine, h = gcos8 - b;sine, (2.10a) 

6; = -&he t 4,cose, h = +;tie t +:cose, (2.106) 

this solution is easily derived from that given by Salopeks’ for scaler fields (+5:, 4:) whose 
potential was a function only of the second field $i, 

V(&,&P) = Voewc-E$,. (2.11) 

All solutions of the SHJE with potential (2.8) may be derived from eq.(2.9). Surfaces 
of constant Hubble parameter are plotted as solid curves in Fig.(l) for the case m = 1, 
0 = 0. The family of orthogonal lines (broken curves) are the physical trajectories. This 
solution may be verified by differentiation; it is actually derived by looking for symmetries 
in the SHJE. 

Once may invert (2.6c,d) to determin e 
the original variables, Q, bj, a+~: 

the 4 constants of integration as a function of 

b I b(a,+j,r+~;p,8), and similarly for m, &‘, R”‘. (Al - A5) 
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These complicated analytic expressions are explicitly given in Appendix A and they will 
play a crucial role in what follows. 

1. Equation for Trajectories in Field Space 

The equation for the trajectories in field space may be explicitly written. It is useful to 
work in t- of the rotated fields, (A, &), eq.(Z.lO), w c are parallel and perpendicular, hi h 
respectively, to the lines of uniform potential. Given &, one defines u from which one 
determines &: 

u=u,+ 
\i 

jf$ dN3P- 1) t 3pm-’ (K - #IL), (2.12a) 

4; = m4: t b + -$++ (2.126) 
x 

The function v(u) is defined by 

U(U) 5 -s x [=@(3p- l)+ 3p+lnlcosh(u)-sinb(u)+(3p- 1) f 3~11, (2.12~) 

and the constants c$;, and u, are values of 4; and II at a = m: 

t m 
J rn’(3P- 1) t 3p 

Urn] 9 (2.12d) 

u, = arctanh( 
1 

mq3p - 1) + 3p 
1. (2.12e) 

2. Late Time Evolution of Fields 

The late time evolution of the fields during the inflationary epoch determines the 
initial conditions for structure formation as well as microwave-background fluctuations. As 
D + 00, the decaying modes are no longer dynamically important. As can been seen from 
Fig.(l), #; approaches &,, eq.(Z.lZd), and 4; evolves according to the attractor solution,34 

ln(&iJ) = 3a(t,z) = 3&G$$ + C(z) (2.13) 

where C(z) is a constant in time along the trajectory. As a result, C is a function of the 
new canonical variables: 

C(z) z ln Iq t ; In[(d + l)(rn’(3P - 1) t 3P)l 

- et1 - $,(-S;, t 6) t 4 m’(3p - 1) + 3pu, - In fi. (2.14) 



C(z) gives the variation of the volume element on a time hypersurface of uniform potential, 
t = 4% 

w3+%,~Y~(4%41 = C(z) - C(Q); (2.15) 

here, z and 2s are two arbitrary spatial points. C(z), fist introduced by Bardeen, Steinhardt 
and Turner” ln linear perturbation theory, is the quantity of primary interest for adiabatic 
models of structure formation. Please note that the definition (2.13) is 3 times their original 
definition, C = ~CBST. For example, in the CDM model, cosmic microwave-background 
(CMB) anisotropies at angular scales greater than N 3 are proportional to C, 

ATCMEITCMB = P’cMB(=) - km(~o)l/km(~o) = -[C(z) - C(~)1/15. (2.16) 

through the Sachs-Wolfe effect (see Sec. V). 

III. INITIAL CONDITIONS 

In Sec. IV, models are constructed by joining several linear lnV potentials together. 
It will be assumed that Gaussian fluctuations arising from short wavelength quantum noise 
are generated in region 1 of the potential which is characterized by parameters p1 and &. 
A patch of our observable Universe will be described using a finite lattice of spatial points. 
Non-Gaussian fluctuations in the lattice are produced when one passes over other regions 
of the potential. 

The Hubble function in region 1 of the potential is taken to be the attractor solution, 

H&+j;m,&) = {G=xP[ - /$(~hsi,e~~ ‘2c0se1)l (3.1) 

corresponding to the parameters b = -co and m = 0 ln (2.9) having homogeneous values. 
Given arbitrary initial conditions in region 1, the Hubble parameter will typically relax to 
such a solution within one expansion time. 

In region 1, the fields on the lattice evolve in time Q according to eq.(2.6d), 

(3.2~1) 

where &J(Z) are the initial values of the scalar fields on a surface where the metric is 
uniform, Q = 0. Since I am assuming the attractor solution, the momentum variables are 
not independent degrees of freedom but are given by partial differentiation of II*,, through 
eq.(2.6c): 

*+I (a, z) = - g& -e3nH,tt(~j;m,e,)s~e~, &(a, 2) = -e3”Htttt(&;pt, fh)coset. 
J& 

(3.26) 
The new momentum constraint (2.6b) is then satisfied at early times, and the evolution 
equations guarantee that it will be satisfied at late times. 

It is useful to project the initial values of the fields into components parallel and 
perpendicular to the trajectory 

ho = hc08el - ~l18inel, ho = hsidl t ~IIcosel, (3.3) 
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where $11(z) and 41(z) are taken to be independent c6z.wieal 
spectrum, 

random fields with power 

(3.4a) 

= (fy (&)---? 

The power spectrum gives the dispersion in the complex amplitude, $11,1(k), of a Fourier 

mode &&, with comoving wavenumber k. It will be assumed that these amplitudes 
are iddependent and Gavasian distributed. He and en0 are the Hubble parameter and 
the scale factor, respectively, when the longest mode in the lattice having physical length 
2rk;‘ea0 left the horizon, k,,e-“o = HO. The power spectrum measures the dispersion of 
the scalar field per Ink interval. For example, if the discrete Fourier modes in the lattice 
are approximated by a continuum, then the expectation value for the square of the field in 
the lattice is, 

< #4 >=< d(z) >= ,mo I PQ,,(k) T = ‘“B,,l)If;. 
Finite lattice effects alter this formula by factors of order unity. In the actual calculations, 
the initial conditions are implemented through a fast-Fourier transform. (See ref. 32 for a 
more extensive discussion of initial conditions). 

The formula (3.4) assumes that the short wavelength quantum fluctuations began in the 
Bunch-Davies va~uu.m.~‘~*s However, as the Universe inflates the wavelength of the fluctu- 
ations eventually exceeds the Hubble radius. It is then an excellent approximation to treat 
the fluctuations using classical random fields in a process termed stochastic inflation.zs-33 
In this way, a quantum treatment of the gravitational field is avoided. 

The power spectrum, eq.(3.4b), decreases with increasing k because the Hubble pa- 
rameter decreases as the scalar fields roll down the potential in region 1. As a result, 
quantum noise is no longer sign&ant when E is much smaller than its initial value HO; 
subsequent evolution is then governed by the classical long-wavelength equations of Sec. II. 
In the limit, m + co, one recovers the fiat Zeldovich spectrum. However, in practice, one 
assumes a finite value for m which introduces a short distance cutoff; otherwise eq.(3.5) 
would diverge. 

The time hypersurface has been chosen to be one of uniform a because in longitudinal 
gauge the metric fluctuation is small when short-wavelen th scalar field fluctuations leave 
the horizon.s’ Actually, a better choice of time parameters f 

presented here, the improvement is small. 
is ln(He”), although for models 

Several conditions must be satisfiedin order to justify the initial Gaussian random fields 
+$0(z). Firstly, HO must be much smaller than the Plamk scale mp (see ref. 32). The 
potential must also change slowly when the short wavelength quantum fluctuations on the 
lattice leave the horizon, i.e. p, >> 1. Both of these conditions are well met in the models of 
this paper. Lastly, a linear perturbation analysis should be valid for quantum fluctuations 
with wavelengths smallez than the Hubble radius. Tbis last assumption is questionable 
since in all infiation models quantum fluctuations start with wavelengths shorter than the 
Plamk length. 
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In this paper, I have assumed that the energy density of the Universe was once domi- 
nated by scalar fields which led to an inflationary epoch. Eventually, the scalar field energy 
must be transformed into matter and radiation. Because this transition time is not known, 
the present length scale of the lattice is arbitrary, and it will be assumed to be comparable 
to that of our observable Universe. The amplitudes of the homogeneous k = 0 modes are 
also arbitrary since their dispersion, eq.(3.4a), is infinite. Finally, Ho is a free parameter 
whose value is chosen so the resulting fluctuations are large enough to produce structure in 
our Universe. As a result, the value of the potential at the origin, Vo, is irrelevant to the 
dynamical equations provided that Ho >> [8~V~/3m~]‘/~. For example, V, does not enter 
explicitly in the trajectory equation (2.13). 

IV. MODEL CALCULATIONS 

Given an arbitrary scalar field potential V(&), one could in principle use the evolu- 
tion equations for homogeneous mimisuperspace, eqs.(2.7a,b), to solve the long-wavelength 
system. In fact, the momentum constraint is satisfied by the initial data of Sec. III, and it 
is preserved in evolution. However, for the models that produce significant non-Gaussian 
fluctuations, numerical problems hamper this approach. Typically, two time scales enter, 
the Hubble time, and another time scale much smaller than it. Hamilton-Jacobi methods 
thus prove invaluable. 

I will consider potentials that are created by joining several linear luV potentials to- 
gether. The interfaces are then straight lines in field space (see Figs.(2,3)). Fortunately, 
it is not necessary to perform any numerical integrations. The trajectories in any linear 
InV ree$lon have analytic expressions and are chmacterized by the constants of integration, 
(b,m,a ,r”). By insuring that the physical fields, (a,&,&) are continuous at the inter- 
faces, one can smoothly match the trajectories fromone region to the next. For the models 
considered, all the field trajectories eventually enter the same linear lnV region. At late 
times in the inflationary epoch, one can determin e the adiabatic primordial fluctuations for 
structure formation by calculating the time lag, AC/3 = Aa, for different trajectories to 
reach the same line of uniform potential. 

Three sets of calculations will be given. For illustration purposes, I will first describe 
a potential consisting of two linear lnV regions joined at a single interface although it 
generically produces Gaussian fluctuations. When there are three linear In V regions in the 
potential, then one can indeed generate non-Gaussian fluctuations. When the evolution of 
the system is viewed in field space, the analysis closely resembles that of geometric optics 
where one routinely considers a wavefront passing over an interface. 

A. POTENTIAL WITH A SINGLE INTERFACE 

In the fist instance, consider model A where the potential is obtained by joining two 
linear InV potentials continuously along the Line 4 = &tanxls (see Fig.(Za)). Continuity 
of the potential, eq.(Z.g), at the boundary implies that the potential parameters, p1 and 6’s 
in the upper h&plane (region Z), are ralated to those in the lower half (region 1) through, 
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For a given spatial point in the lattice, the value of the fields at the interface follow from 
the initial conditions in region 1, eq.(3.2), 

411 = 41 
COSXll sinxl2 

co4x12 - 4 ) ’ 
421 = 41 

cos(x12 - 8,) 

?+-& - Hatt(4jI;pl,h) e30r~idl, Tp = j!!!& -H&~~I;PI, 81) e3P1~~~~1. 

(4.25) 

_. 
(4.2~) 

Using these values, and assuming that p = p1 and 0 = Bs, one can determine the constants 
of integration, (b,m,**,rm), eqs.(Al-A5) in region 2, and then calculate C in region 2 
through eq.(2.14). All the equations are algebraic. 

In Fig.(2a), I display the scalar field potential as well as some typical trajectories. 
In Fig.(Zb), I show the distribution of c on a 2-D slice from a 64s lattice calculation. For 
plotting purposes, the initial value of the Hubble parameter was chosen to be Ho = lo-smp, 
although microwave-background anisotropy limits would require Ho < 10~‘m?. Here, the 
potential parameters in the lower half-plane are pt = 20, Ol = -60°; in the upper half- 
plane, pz = 2.7, 19s = -30’. The interface is inclined at an angle of xlz = 165O to the 4l 
axis. Surprisingly, one still obtains Gaussian statistics (Fig.(Zb)) although the fields mix 
at the interface. 

In fact, the analytic calculation of C in region 2 is quite straightforward if one neglects 
homogeneous field (denoted by h.f.) contributions which are uniform over the entire lat- 
tice. (Only differences in C are of physical interest; see, for example, eq.(2.16).) The new 
canonical variables in region 2 are (eqs.(Al-A5)): 

m(z) = 
sin(el - e, ) 

4el - 0,) - &7iG 
= h.f., 

b(2) = (cOse, - msine,)~l,(z) - (mcOsel t sinel)~lr(z) t h.f., (4.3b) 

In)*'(z)1 = 3ar(z)- 
/- 

~(43r(z)c0se2 - 41r(2)sins,)/mp + h.f., (4.3c) 

dyz)/r’(z) = 411(2)c08e3 + 4r,(z)aidr + h.f.. (4.3d) 

Applying eq.(2.14), [ in region 2 admits the simple expression: 

C(z) = 3bdz) - ~(4tr(+08er - 4+)8he,)jmp] +h.f. 

t=(Xla - ed (1 - E) 1 + h.f.. 
(4.4) 

((2) is a Gaussian random field because it is a linear combination of Gaussian-independent 
fields, 411(z) and 4*(z). In the continuum limit (see eq.(3.5)), the standard deviation in C 
at a single point is readily calculeted, 

a( =< C’(z) >1/a=3~~~~[~tt~a(x~,-eBI)(1-&)z]'1', (4.5) 
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which agrees with the numerical results of Fig.(Z) f i one considers finite lattice corrections. 
Apparently, each trajectory evolves in a self-similar way. In passing over the interface, 
[ always increases. A simple intuitive derivation of this result based on the attractor 
approximation will be given in Sec. C. 

B. POTENTIAL WITH 3 INTERFACES 

One can obtain non-Gaussian fluctuations on cosmologically observable scales from a 
potential created by joining three linear lnV regions. In order to demonstrate the variety 
that is possible, I will consider two examples, models B and C, which are illustrated in 
Fig.(3a,b). 

Continuity at the various interfaces imply relationships of the potential parameters in 
addition to eq.(4.1): 

h 

/- 

83~~~ - es) m 

/- 

s%;Y~~ - et) 

F3 -=s~(x13-e,)’ h=sin(X31-e3)- 

The angles between the interfaces, ~11, xss, xsl, are not all independent, and one must 
insure that 

1 = WXIZ - 6) s~(x~~ - e3) S~II(X~~ - e,) 

sin(x13 - 4) S~II(X,~ - e,) sh(x31 - e3) 1 
(4.7) 

which is found by multiplying (4.1) by (4.6a,b). 

In model B, trajectories begin in the lower half-plane, region 1 (pl = 20, 01 = -500), 
with initial Hubble parameter, Ho = 10~snap, consistent with CMB limits. If a trajectory, 
enters region 3 (upper left hand region where 0s = -3O“), then calculation of < is virtually 
the same as in Sec.A. 

However, if the trajectories pass into the upper right hand area, region 2 (0, = OO), they 
receive an upward kick from the potential, which eventually forces them into region 3. (If 
this diagram were extended, one would find that all trajectories actually cross in region 3.) 
The angles of the interfaces starting with the lower right and proceeding counterclockwise 
are, x11 = lo’, xss = 39O, and ~31 = 156 O. 
than those of Sec. A because one must 

The calculations here are more complicated 
d&en& e where a trajectory strikes region 3 after 

it has passed through region 2. The solution of the intersection point requires the solution 
of a transcendental equation which may be readily solved if one employs Newton’s method. 
The details are given in Appendix B. Once the fields (cx,4jj,&) are known at the 2-3 
interface, the calculation of C in region 3 proceeds along lines similar to Sec. A. 

6 is not constant in passing through region 2. The evolution of the fluctuations is not 
adiabatic. In Fig.(4a), contour maps for C are given for a 2-D slice in a 64s lattice calculation 
of model B. The corresponding distribution of C in region 3 is plotted in Fig.(4b). For the 
parameters shown, it was found that non-Gaussian fluctuations can arise if the fields passed 
sufliciently near the origin, which can be arranged through the choice of the homogeneous 
mode amplitudes in eq.(3.3); in fact, the amplitude for the k = 0 mode of 4~ was taken to 
be 3.9 x 10m7mp. In model B, fluctuations greater than 2~ have been suppressed, leading 
to a double peak in the distribution. 

The power spectrum for the non-Gaussian field ( is shown in Fig.(G). It is found by 
calculating numerically the dispersion in the Fourier mode amplitudes through eq.(3.4a). 
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Nonlinear effects do not change the shape of the spectrum which has remained essentially 
flat. The free parameter Ho sets the amplitude of the fluctuations which is determined by 
the galaxy-galaxy correlation function.” 

The length scale associated with the lattice calculation is arbitrary because the fluctu- 
ation spectrum is described by a power-law. However, if the distance between. two adjacent 
lattice points corresponds to the length subtended by 3’ on the surface of last scattering, 
then Fig.(4a) may be roughly interpreted as a large angle microwave-background map. The 
amplitude of < (AZ’CMB/Z’CMB)’ > is virtually the same as CDM with Gaussian primor- 
dial fluctuations. Please note that a large angle microwave-background map would actually 
correspond to a spherical shell in the 3-D simulation as opposed to a planar slice. In fact, 
according to Scaramella and Vittorio,*s the histogram Fig.(4b) will change slightly in going 
from a planar map to that of a spherical shell. A more careful treatment of microwave- 
background fluctuations will be considered in the future. 

By varying the geometry of the potential surface, one may produce alternative distri- 
bution functions. For example, in model C depicted in Fig.(3b), the potential parameters 
are chosen so that the scalar fields move more slowly when they cross into region 2 (where 
e3 = 0): e, = -300, e, = 209 Xlr = -500, xp3 = 580, x31 = 112.17 p1 = 20, p, = 100.3, 
p3 = 52.9. The amplitude for the k = 0 mode of 41 (eq. (3.3)) was taken to be zero 
whereas the initial value of the Hubble parameter was Ho = 2 x lo-smp. Contour plots 
and the associated distribution for C are shown in Fig.(5a,b). Model C doers from B in 
that -2~ fluctuations have been clipped from the distribution which exhibits a single sharp 
peak at -1~. 

Although the evolution of the fields over the interfaces appears quite complicated, one 
may fmd a relatively simple expression for C in terms of 41, and 41. Holding 4I fixed, one 
can see that the time lag is simply proportional to 411. In fact, one may write C as a sum 
of the Gaussian random field 411 and a fonction of the independent Gaussian random field 
4J.: 

C(Z) = -3JG+ + f(4J.(z)). (4.8) 

The function, f(4l) can be computed numerically, and it is plotted in Fig.(7). For both 
models B and C, f(4l) is a linear function for 41 < 0 because the corresponding trajectories 
only pass through two regions; C is then given by a result similar to eq.(4.4). 

However, in modal B, f(41) reaches its maximum at the origin, where it has a cusp. 
In fact, for small positive 41, f(4l) cc -K. This behaviour may be understood quali- 
tatively using a crude analogy. The time for an object near the surface of the earth to fall 
is also proportional to the square root of its distance if it starts with a negligible vertical 
velocity. The dominant contribution to C is actually from f(41). The reason that the bis- 
togram for C in Fig.(4b) possesses no 2~ fluctuations is that the function of reaches its 
maximum at 41 = 0. By suitable choice of the initial homogeneous values of 41, one may 
effectively clip the high (r fluctuations. The addition of the term 0: 411 in the expression for 
C serves to convolve the distribution of with a Gaussian random field 411. 

In model C, f(4l) is essentially a linear function for positive values of 41 although its 
slope is steeper than that for negative values of 4 1. 
which produces non-Gaussian fluctuations. 

However, there is a kink at the origin 

C. ANALYTIC CALCULATIONS BASED ON THE ATTRACTOR SOLUTION 
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Some of the features in the above models may be understood using a simple analytic 
approximation. After transients have died away, the fields evolve relatively slowly, and the 
attractor solution for the Hubble function is an excellent approximation: 

Hdt(4i;Pj9ej) = [3m;(l Fll(3p,)) v(&;Pj>“j)ll’a. 
f 

This solution was applied in region 1 of the potential, but now I will consider using it in 
regions 2 and 3 as well. 

In eq.(4.9), surfaces of uniform potential coincide with uniform Hubble surfaces. The 
fields move along straight lines orthogonal to these surfaces with uniform speed, 

vj E [(!%)’ +&y = e. 

If the time scale of a variation in the potential is longer than the Hubble time, then the 
attractor approximation is justified. When the potential changes rapidly, as in the models 
presented in Sec. A, B, then one, of course, would expect that the approximation breaks 
down. However, it still gives surprisingly accurate results in many cases. 

For the model discussed in Sec. A, one can apply an analysis similar to that of geometric 
optics where one calculates phase differences that lead to interference effects. AC/3 is just 
the time lag between two trajectories to reach the same surface of uniform potential (see 
Fig.(S)), 

W,, 4 & 
A{ =3Aa = 3(-- 

q +iy+ 

~3 - i%i,+,, + 6iA&lt+1s - 0,) _ -A& sh(xy,a - e2) 
- mP mP mP cos(xls - e,) 64.11) 1 

Once again, 41 and 411 are the transverse and parallel values of the fields in region 1 (lower 
half-plane). The distances in the potential surface, dl and d2, depicted in Fig.(a) result 
in additional time delays. Applying (4.1), one recovers the previously derived result for C, 
eq.(4.4), governing a potential with two interfaces. In fact, one could have deduced that 
transient phenomena 
eq.(4.4). 

would not change the formula for C if one considered the fist line of 

For potentials obtained by joining three linear lnV potentials together, the attractor 
approximation is not as useful, although it does give accurate results when the trajecto- 
ries are far from the vertex. Geometrically, it should be clear in this instance, that for 
trajectories that enter region 2 and then pas‘ into region 3, that the time lag increases 
linearly with 41 although the sign may be positive or negative depending on the model 
considered. Hence, if one considers trajectories that enter and leave the same regions, then 
the time lag wilI not introduce non-Gaussian fluctuations from initially Gaussian stochastic 
noise. Within the context of long-wavelength fields, it ir essential that transient behaviour 
appear, or else some trajectories must pass into d&rent lnV parts of the potential such 
as in models B and C. 

D. LENGTH SCALES WITH NON-GAUSSIAN FLUCTUATIONS 
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By definition, for a pure Gaussian random field characterized by a power spectrum, 
the statistics of the field remain Gaussian no matter what the resolution scale. However, 
the situation is much more complicated for a non-Gaussian random field. Given the lattice 
calculation described in Sec. B and depicted in Figs.(3-7), I would like to address the 
question whether a subsample demonstrates non-Gaussian fluctuations. My description 
will be intuitive. 

In this subsection, a probability distribution, Q(C), will be considered to be non- 
Gaussian if for some value of C within two standard deviations of the mean, the corre- 
spending value of Q exceeds twice that of a Gaussian distribution, (2m$)-‘/‘exp-(t- < 

C >)‘/(2$)]. This definition is quite arbitrary, but it is sticient to illustrate the basic 
idea. 

I will first consider model C. The probability that a subsample, a cube with side 1, 
displays non-Gaussian statistics is given approximately by, 

p= & _:e-‘%t, 2 = 2(lm;., I 
_ */b-l) . 

Here, I,.. is the length scale associated with the lattice calculations depicted in Figs.(3b) 
and Fig.(5a). As the subsample size decreases to zero, most distributions will be Gaussian. 
However, fluctuations change from being non-Gaussian to Gaussian when z N 0.2, and the 
corresponding length scale is quite small for p, = 20, 

1 
-z 
1 

o~lbl-‘w x 10-10 (4.13) 
VnOl 

In model C, if I,., corresponds to the size of our observable Universe, the fluctuations 
in ( will be non-Gaussian for almost all length scales of interest to astrophysics. As m 
increases, the power spectrum more closely approximates a flat Zeldovich spectrum, and 
the transition length scale decreases even further. 

The form& is based on some simple considerations of the initially Gaussian field 
41. If the average value of Ipl in a particular cell is denoted by 41, then non-Gaussian 
fluctuations will typically arise in that cell lf the origin, 4I = 0, is contained in the two 
sigmainterval, (41-2~+,,(1), 41+2 u+ol (1)). The standard deviation, o+~ (I), of a cell with 
length 1 contains contributions from wavemunbers, k = (l,../l)Hoen~ to k = 00, eq.(3.5): 

c&(l) = (hs$a,’ (~yh-l)* 
ma. 

In this way, as trajectories associated with the cell roll down the potential, they will straddle 
the origin where there are strong nonlinearities. Since 41 itselfis Gaussian distributed with 
dispersion given by eq.(3.5), the fisction of eelIs in the full lattice which would yield non- 
Gaussian fluctuations is is just the formula (4.12). 

In the lattice calculations of model B, the Gaussian distribution for qI is not centered 
about zero, since the amplitude of tiL(k = 0) was initially taken to be 3.9 x lo-‘ma. As a 
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result, eq.(4.12) for the probability of observing non-Gaussian fluctuations is modified, and 
it is given approximately by, 

I I 
-;y;oe-%t, -;y;oe-%t, + = 2(+.yp4, + = 2(+.yp4, 20 = bl(k = o)/ [/v,,. 20 = bl(k = o)/ [/v,,. 

(4.15) (4.15) 
Once again, if l,, Once again, if l,, is comparable to the size of our observable Universe, the fluctuations is comparable to the size of our observable Universe, the fluctuations 
are non-Gaussian for those scales of interest for astrophysics. are non-Gaussian for those scales of interest for astrophysics. 

V. EVOLUTION OF NON-GAUSSIAN FLUCTUATIONS 
DURING RADIATION AND MATTER-DOMINATED ERAS 

Although the evolution of the Universe was nonlinear during the in&tionary era, the 
subsequent evolution during the radiation and matter-dominated epochs may be analyzed 
using linear perturbation theory, at lesst until the fist formation of stars and galaxies. 
The evolution is most simply described in Fourier space where the transfer function of 
each mode has already been computed for adiabatic fluctuations in the CDM model.’ 
Calculations evolving non-Gaussian primordial fluctuations are no more difEdt than the 
Gaussian case. For the models considered in Sec. IV, contour plots are given at late times 
for both the gravitational potential and the density contrast. The prospects of observing 
non-Gaussian microwave-background fluctuations are discussed. In what follows, I will 
assume that the present value of the Hubble parameter is l? = 50 km/s/Mpc. 

A. DESCRIPTION OF NOTATION 

In linear perturbation theory about an Einstein-desitter Universe, it is still convenient 
to employ longitudinal gauge eq.(2.1) b ecause one may generalize the notion of Newtonian 
potential. when the stress perturbations are isotropic, one follows Bardeen” in writing 
the lapse function and the scale factor, 

NT, 2) = a(l) (1 - *I&,2)), and ea(+ = a(~) (1 + G&T, z)), (5-l) 

in terms of the gravitational potential, QB(T, 2); T is confcmml time and a(r) is the back- 
ground scale factor. -Qa may be interpreted as the Newtonian potential because it satisfies 
the Newton-Poisson relation, 

V’@~(T, z) = -4xGa%p(r, 2); (5.2) 

~P(T,z) is actually the comoving density perturbation, P(T,Z) - P,,(T), where pa(r) is the 
background density. In Fourier space, this equation is particularly simple, 

&$&, k) = ;+(r, k), 

where the background Hubble parameter is E = &./a’ with ir being the derivative of the 
scale factor with respect to conformal time. 
Q~(T,z) to denote 

Consistent with current conventions, I use 
th e gravitational potential in position space, while H&r, k) will refer 

to its representation in Fourier space. In the perfect fluid model, one treats the multi- 
component fluid of radiation, baryonic and dark matter, as a single adiabatic fluid where 
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the pressure is only a function of the density p = p(p). Th e 
is given by” 

evolution equation for +H(T, k) 

-&(r, k) + 391 t c;)&&T, k) t [p&f - w)a’ + k’c:]Q&, k) = 0; (5.4) 

po,po are the background density and pressure, and w = p,~lpa, c: = &lb,. Although 
it may appear obvious, it is worth noting that this equation is real; the complex number 
i = &i does not enter the equation. (For an excellent review of linear perturbation theory, 
consult Mukhanov et ,zZ.‘~) 

The evolution of fluctuations in the CDM scenario are more complicated than that for 
an adiabatic perfect floid because one must, among other things, consider the free streaming 
of neutrinos as well as photons. However, eq.(5.4) is valid at all times for a fluctuation with 
physical comovlng wavenumber at the present epoch less than k., x 0.01 Mpc, determined 
by the epoch when the radiation energy density equalled that of the matter. When the 
wavelength of fluctuations is larger than the Hubble radius, k/(Ea) << 1, this equation 
has a constant of integration, C(k),“s46 

ak) = (1 + i,fi) 
[Q&T, k) + ff-‘&sr(~, k)/al + 3*x(7, k). 

It measures the metric perturbation on a surface of unifo~ Hubble parameter. Eq.(5.5) 
relates the Fourier transform of C(z) as defined in Sec. IV (eq.(2.13)) to the gravitational 
potential Q&, k). In fact, it determin es the amplitude of Q&T, k) when k/(Ha) << 1. 

At all wavelengths, Qx(~,k) approaches a constant after the matter-dominated era 
(see eq.(5.4)). Moreover, for those comoving scales that m-enter the horizon during that 
era, the value of Qa at the current epoch, rf, is given by eq.(5.5) withpo = 0 and 4~ = 0: 

Q&j, k) = C(kW. (5.8) 

Microwave-background fluctuations smoothed on angular scales larger than 3” are then 
given by the Sachs-Wolfe formula, 

ATCME/~CMB = -AQa(q, 2)/3 = -AC(z)/15, (5.7) 

where the functions Qa and C are evaluated on the surface of last scattering. Intuitively, 
the Sachs-Wolfe result gives the redshift of thermal radiation as it leaves the gravitational 
potential well; the sign of (5.7) agrees with what one would have naively expected.‘9 

B. COLD-DARK-MATTER TRANSFER FUNCTION 

Aa defined by Bardeen et aso the transfer function, T(k), measures the evolution of 
metric fluctuations after the inflstiomry epoch. It gives the present value of the gravita- 
tional potential if one knows (‘(k) f?om in&&on: 

*a(k,Tt) = W)C(kP. 

As k -+ 0, T(k) -t 1, and the result agrees with eq.(5.6). 
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What is not immediately obvious is that the transfer function T(k) is real. When 
one Fourier tramforms the linear perturbation equations for collisionless matter, baryons 
aud relativistic particles, spatial gradients Vj are replaced by ikj. Naively, one would 
have expected that the equations are intrinsically complex. However, it turns out that 
the evolution equation for Q&r, k) is real. For example, the evolution equation (5.4) for 
perturbations in the perfect fluid model is real because only terms quadratic in ikj appear. 

As a result, the transfer function calculations quoted by Bond and Efstathiou’ are 
valid for Gaussian as well as non-Gaussian primordial fluctuations. No additional phase 
factors enter. Given the lattice calculations of Sec. IV, the evolution of Q&T, z) through 
the linear regime is trivial. One simply Fourier transform C(z), multiplies each mode by 
the transfer function, T(k)/& and finally, one inverse Fourier transforms the results. In 
order to obtain, 6p(7,, 2)/p, one multiplies by Q&r,, k) by k’ before one inverse Fourier 
transforms (see eq.(5.3)). 

Using the non-Gaussian primordial fluctuations of model B described in Fig.(4), con- 
tour plots of 6p(7,, z)/p me displayed in Fig.(Sa) at the present epoch for a box 128 Mpc to 
a side. Only 1 and 2 Q contours are shown. On the right half of the figure, 20 fluctuations 
are scarce. As a result, the density field is not a just a collection of tight sets of islands 
as one expects for a Gaussian random field. Instead, it appears to distributed along sheet- 
like structures. Furthermore, the incorporation of nonlinear evolution would enhance the 
wall-like features through the Zeldovich pancake mechanism. The corresponding histogram 
of density fluctuations is plotted in Fig.(Sb). It is mildly non-Gaussian with a peak at 
0.80. Non-Gaussian fluctuations are more apparent in the gravitational potential given in 
Fig.(lOa,b). The broken curves correspond to -1, 0 LT variations from the mean, whereas 
the solid curve is a 1 v variation. There are no &2u fluctuations as shown in Fig.(lOb). 
For the benefit of the reader, the power spectra for Ba and 6p/p are displayed in Fig.(ll). 

Analogously, one may evolve the primordial fluctuations associated withmodel C. Once 
again, the 1, 2 IJ contours for 6p(~,, z)/p at the present epoch are given in Fig.(l2a). These 
contours are similar to those of a Gaussian random field. However, differences are quite 
apparent in the histogram of Fig.(l2b) which is strongly non-Gaussian. In fact fluctuations 
less than -20 are highly suppressed. Contour plots for +a and its distribution are given 
in Fig.(lJa,b). 

Peebles13 has proposed that non-Gaussian primordial fluctuations should perhaps be 
applied in the modelling of structure formation. He has pointed out” that the clipping 
of peaks in the initial den&y field would produce sheet-like features. For example, such 
structures appear in the slice of the Universe considered by the Center for Astrophysics.3 
Model B presented in this paper also produces sheet-like structures. Basically the result 
of the nonlinear evolution over the interface is to clip the 2~ peaks in the gr&tational 
potenfid ip~(~, z). Since dp/p is related to QH through the Newton-Poisson relation, it 
is true in a crude sense that the peaks ln Q = correspond to peaks in 6pfp: one expects 
high density fields ln the wells of the Newtonian potential -ipm. In fact, there are some 
parts of the lattice where 20 peaks are non-existent, although this is not universally true 
because some 20 peaks survive such as in the left half of Fig.(Sa). In fact, the signature 
for non-Gaussian fluctuations is not very pronounced ln the histogram, although it is quite 
clear in the maps. 

By fitting qualitatively the observed distribution of galaxies on the scale of 50 Mpc, 
model B yields a crude prediction: cold spots in Large-angle microwave-background maps 
should be suppressed IU wan demonstrated in Fig.(4). However, this model does not readily 
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explain the excess power in the galaxy-galaxy correlation function as reported by Maddox 
aL5 Perhaps, it is necessary to incorporate nonlinear evolution of the density field through 
an N-body code. 

C. PROSPECTS FOR OBSERVING NON-GAUSSIAN FLUCTUATIONS 

If the microwave-background anisotropy is measured in the near future, then the best 
test of non-Gaussian fluctuations would come from all-sky maps at large angular scales. 
For example, if the experimental resolution was 3” x 3’, one could accumulate approx- 
imately 5000 pixel measurements over the entire sky. If experimental systematic effects 
could be modelled, and if galactic as well as extra-galactic radio sooxes could be removed 
from the signal, one could then construct a reasonably good histogram of ATCMB/TCMB 
which could be compared with the models of Sec. B. In the near future, the Cosmic Back- 
ground Explorer7 will attempt such maps. In addition, all-sky maps could be provided by 
balloon-borne experiments.61-63 Tests at smaller angular scales would probably not give 
enough independent measurements to test non-Gaussian fluctuations, although the first 
measurements of anlsotropies are indeed likely to come at smaller angular scales.62 

VI. CONCLUSIONS AND SUMMARY 

Once can view the phenomenology of large scale structure in the Universe as a three 
step process. Firstly, one should construct a viable particle physics model that is consistent 
with the required level of metric fluctuations. Embedding inflation in a particle physics 
scenario is not easy, although some interesting attempts have been made by Salopek, Bond, 
and Bardeen,” aa well as Frees=, Frieman, and Olinto .64 Secondly, one should tailor the 
model to give the correct shape of the fluctuation spectrum. For example, large scale 
power may be obtained in linear perturbation theory if the scalar field potential is suitably 
ch~sen.‘~ However, it is preferable to obtain large scale power through scales that enter 
the transfer function (see Bond and Efstathlou” who consider the possibility of a decaying 
17 keV neutrino). Thirdly, one should ensure that the statistics of the model agree with 
observations. Iu this paper, a richer class of i&ation models is considered which produce 
non-Gaussian primordial fluctuations. 

The distribution of cosmic microwave temperature anisotropies could serve as a valu- 
able discriminator of various models of the early Universe. For example, it could indicate 
that nonlinearities in inflation model were important. It could even determine what was 
the initial quantum state of the Universe (see, for example, Hartless). 

Because inflation probes arbitrarily small distance scales, it is quite likely that non- 
Gaussian fluctuations may arise f&n the interactions of various fields. However, the 
greatest obstacle is actually calculating these effects. As the first non-trivial improvement 
over homogeneous minisuperspece models, one should calculate nonlinear effects at long- 
wavelengths. The long-wavelength systemis essentially classical, although short-wavelength 
quantum noise provides its initial conditions. In addition, it is tractable. By applying an- 
alytic solutions for scalar fields self-interacting through an exponential potential, it is not 
necessary to numerically integrate any differential equations. One can construct viable 
non-Gaussian models by joining several potential regions where lnV(q&, c,bl) is linear. Un- 
fortunately, there is some tuning in the non-Gaussian models of this paper. The initial 
homogeneous values of the fields are free parameters. If one would change these values, one 
could produce models that yield only Gaussian fluctuations. However, the calculation of 
non-Gaussian fluctuations is only in its infancy, and hopefully more natural models can be 
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constructed in the future. Perhaps scalar field potentials with many interfaces will yield 
more elegant results. In addition, the long-wavelength approximation is only the first step 
in calculating nonlinearities in inflation models. Richer approximation schemes should be 
considered in the future. 

There is currently no strong cosmological evidence for non-Gaussian fluctuations. One 
of the goals of the present work was to generate the simple model B that could fit qual- 
itatively the observed sheet-like distribution of galaxles.3 As a result, one expects that 
cold spots in large-angle microwave-background maps are suppressed. However, since the 
primordial fluctuations presented in this paper mmain scale-invariant, the correlation func- 
tions are identical to CDM with Gaussian initial conditions. It is not clear how to account 
for the excess power in the galaxy-galaxy correlation function as seen by Maddox et al6 
Therefore, it would be interesting to consider N-body simulations with initial conditions 
from Model B. 

The definitive test for non-Gaussian fluctuations wilI hopefully come in the near future 
from the Cosmic Background Explorer satellite’ which should be in a position to test the 
CDM model prediction. In addition, balloon-borne experiments could also provide all-sky 
microwave-background maps at large angular scales.‘l-‘3 
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APPENDIX A: CONSTANTS OF INTEGRATION FOR 
COSMOLOGICAL SYSTEMS WITH LINEAR hV(&) 

For a long-wavelength gravitational system with potential given by (2.8), there are four 
constants of integration, the new canonical variables (b, m,r*, r”) which totally character- 
ize the cosmological system. The first two are: 

(z?~~cose + *%id) 
. , 

m=- 
9r* * (A4 

It is then convenient to introduce auxiliary fields, u, v, 

u = arcslllh 
J(3p - l;(d + 1) - arcsinhvy 

v = [2&J-l)vo]-“1 %/m’(3p - 1) + 3pm-‘e-3=exp( 
$ 

p 4* (g3c0se~T~1she)) (xheos~+?rb~s~q, 

Wb) 
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in which case the re mainhg new canonical variables are, 

b =(cose - msine)& - (mcose + sine)4l + 

[udma(3p - 1) + 3p + In Icosh(u) - siuh(u)&n’(3p - 1) + 3pl]. (-44) 

*m = rb{4c0se + 48he - e( 
/-- 

m 
4* d(3p- 1) t 3p 

+ 
J m’(3pm-u1) f ,)I. tA5) 

These expressions were derived in ref. 34 through differentiation of the Hubble parameter 
using eqs.(a.k,d) and (2.9). 

APPENDIX B: COMPUTATIONAL NOTES 

The calculations described in this paper are purely algebraic. All of the differential 
equations have been solved analytically, and the numerical methods involve at most the 
solution of a transcendental equation in a single variable. The most difficult step in the 
analysis of models B and C in Sec. IV is the determination where the scalar fields strike 
region 3 in the three interface models. In this appendix, I will describe how to invert the 
resulting equation. 

Given the new canonical variables, (b(z),m(z),r*(z),?r*(z)), eqs.(Al-AS), charac- 
terizing a trajectory eq.(2.12) in region 2, one wishes to fmd where the scalar fields will 
intersect the interface with equation, 4s = $1 tan;yss. Hence one must solve the following 
equation for 41, 

mP 6 
ht=xza =m& + b - - 

JiTG (3pl - 1) x 

[uh’(3~l - 1) t 3n + In Icosh(u) - &h(u) &ns(3a - 1) + 3m~](s1a) 

where 

4 = 4m + Jf$ 
+?43*:l)t331(u-um). 

@‘lb) 

(Since 0, = 0 in region 2, #,1 = #; and 4s = &.) B e f ore one may proceed further, one needs 

to know the sign of cash(u) - sinh(u)~ms(3ps - 1) + 3pl. In models B and C, it should 
be clear that that 41 - &, < 0 because 4, is initially moving to the right, and hence & 
is the muirnun possible displacement of &. Thus from eq.(Blb), 

si.&osh(u) - shh(u) ma(3n - 1) + 3n] = sign[sinh(u, - u)/sinh(u,)] = sign[m]. 

WI 

After a change of variable and some definitions, 

= = =TP(4 - 4m.), (B3a) 

where 

Y = 3a [1+ (1 - &)mtanxla]/\lm’(3h - 1) + 3p.j, VW 



(B3c) 

f = -sig+] 2sinhu, exp 

=q.(Bl) may be recast in the more useful form, 

0 = g(x) E I - 25 + f. (B4) 

This algebraic equation may be solved using Newton’s method (see, for example, Numerical 
Ilecipes 57). For the initial guess, one chooses 

(B5) 

where 411 is the value of the lint scalar field at the intexface between region 1 and 2. 
Successive approximations to I are given by 

AU calculations leading to { are calculated using double precision which is accurate to 15 
figUW. 

After one has determined the value of & at the 2-3 interface, the corresponding values 
of 4s and u are found from eq.(2.12). The Hubble parameter, H, is given by eq.(Z.ga); a is 
found using eqs.(AZ) and (A3), 

.+ 
[ 

lFb exP@-) {$-J&q. sinh(u - Urn) 

%+I and ,+a follow from eqs.(Al) and (A2), 

da = -$$‘H f r*. 

Hence, dl the field variables, (a, +j, &) are known at the interface between regions 2 and 
3. One may then determine the new canonical variables, (b, m, d, TP) in region 3 through 
eqs.(Al-A5) with 0 = i3,, p = ps. (Note that the field variables are continuous across the 
interface, but the new canonical variables are not.) Finally, one calculates C in region 3 
using eq.(2.14). 
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Fig.(l): The complete solution, Il(#j; b,m;p,B), of the separated Hamilton-Jacobi equa- 
tion is shown for two scalar fields interacting through an exponential potential, eq.(2.8), 
with p = 3. The broken lines are trajectories of the fields, which are orthogonal to the 
surfaces of constant Hubble parameter (solid lines). Here, the mixing angle f3 vanishes, and 
hence surfaces of un&rm potential are just horizontal lines. The new canonical variables 
were chosen to be b = 0 and m = 1. One can ask what happened to space and time 
coordinates in the SHJE (2.6a)? Loosely speaking, a, the natural log of the scale factor 
is the most natural time parameterization of the trajectories. The trajectories themselves 
represent different spatial points. 

Fig.(a): (a) Some trajectories in field space are shown for a scalar field potential with 
a single interface between two regions with linear lnV(~$~, 4~) (model A). The light solid 
curves are lines of uniform potential, whereas the very heavy line is the interface. The 
trajectories (broken lines) begin in the lower half-plane with Gaussian initial conditions 
generated from short-wavelength quantum noise. Even when they pass over the interface, 
the nonlinear metric fluctuation C still remains Gaussian distributed, as shown in the his- 
togram (solid curve) of Fig.(b) which compares the results of a 643 lattice simulation with 
a best fit Gaussian (broken curve). 

Fig.(S): Non-Gaussian fluctuations consistent with CMB,limits may be generated if the 
scalar fields pass over 3 interfaces in the potential. Two scalar field potential surfaces, 
models B and C, displayed in Figs.(a,b), respectively, are considered in order to illustrate 
the d&rent geometries that may arise. The light solid curves are lines of uniform potential, 
whereas the heavy lines are the interfaces. If the scalar field trajectories (broken lines) pass 
sofliciently near the origin, nonlinear effects at long-wavelengths are important. 

Fig.(4): (a] C on our maps for primordial metric fluctuations, C(z), are shown for a 2-D t 
slice in a 64 lattice calculation describing model B (Fig.(Ja)). The broken lines correspond 
to -1, 0 0 fluctuations from the mean of the 2-D slice, whereas the solid curve represents 
a lu deviation. The shaded areaa denote regions with fluctuations less than -2n. There 
are no fluctuations from the mean greater than or equal to 2~. The length scale of the 
lattice is arbitrary. For example, if the the smallest resolvable length scale in the figure, 
l/64 of the lattice size, is chosen to coincide with the angular scale 3O, then this figure 
is essentially a large angle microwave-background map, where the temperature anisotropy 
AT~MB/T~MB = -AC/15 is given by the Sachs-Wolfe relation. In (b), the non-Gaussian 
distribution of C is shown in the 2-D slice. For comparison, a Gaussian distribution (bro- 
ken curve) with the same mean and dispersion as the histogram is also shown. The most 
significant feature of these iigwes is that cold spots in the temperature anisotropy are 
suppressed OVW the usual cold-dark--t& (CDM) model with Gaussian primordial fluc- 
tuations. The resulting galaxy formation scenario is interesting because of the presence of 
sheet-like structures in the evolved density field (see Fig.(Sa)). 

Fig.(S): Same as Fig.(4) except describing model C (Fig.(Sb)). The broken lines are -1, 
0 n deviations from the mean of the 2-D slice, wherean the solid contours represent 1,2 o 
deviations. However, because of the choice of the scalar field potential, -20 fluctuations 
in C(z) are absent in this model. Once again, if one identifies the length scales with that 
of a large angle microwave-background map, then hot apots in ATCMB/TCMB would be 
suppressed. In the context of g&y formation; this model is not appealing because it does 
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not produce more walls or voids than CDM with Gaussian fluctuations (see Fig.(lZa)). 
Fig.(b) gives the distribution of C for the same 2-D slice. 

Fig.(a): For both models B and C, the power spectra P<(k) s k3 < 1((k)/’ > /(27?), for 
the primordial variable < is calculated by taking the Fourier transform of the 643 lattice 
simulations described in in Figs.(3-5). The broken lines are the best fit power-laws. Non- 
linear effects do not change the shape of the flat spectrum whose amplitude is chosen to 
be approxim+ly PC(k). 
that can fit m the l&c:. lo- 

83. The comoving wavenumber k = 1 is the largest mode 
The slow monotonic decrease for increasing values of k is a 

consequence of the Hubble parameter decreasing in region 1 of the scalar field potential. 
The larger the potential parameter m of region 1 is chosen, the flatter is the fluctuation 
spectrum. The deviations from a power-law seen in the last few bins are not significant 
because of the number of modes these bins is decreasing, leading to large shot noise. 

Fig.(7): For scalar field potentials with 3 interfaces (see Fig.(S)), C may be written as a 
Gaussian random field plus f(q5l), a function of the independent Gaussian random field 
41, eq.(4.8). Nonlinearities in f (41) are the source of non-Gaussian fluctuations. In model 
B (solid curve), f(+l) reaches its maximum at 41 = 0 where there is a cusp. In model C, 
f(4l) is always increasing although there is a kink at the origin. In both cases, f(&l) is 
strongly nonlinear. 

Fig.(B): In the attractor approximation, trajectories (broken lines) in field space move 
perpendicular to the lines of uniform potential (light solid lines) with constant speed, vj = 
d4/da = rn~ / e, where pj describes the steepness of the potential eqJ2.8) in the 

3 ‘th region. The analysis of the resulting metric fluctuations is similar to the calculation 
of phase differences in geometric optics. A(/3 = Aa is just the time lag to reach the 
same surface of uniform potential. For a potential with a single interface (extra thick line), 
AC/3 = dh -dh, where 4 = 41tan(x11 -6) and dl = 4~sin(x~~ -~%)/cos(x~z -h), 
where ala,&,& are the angles associated with the interface, and the lines of uniform 
potential in the lower and upper half-planes. For simplicity, I have assumed A$! = 0. This 
result agrees with the exact calculation of model A depicted in Fig.(2). 

Fig.(B): Evolution of non-Gaussian primordial fluctuations through the radiation and 
matter-dominated eras of the CDM scenario is a straightforward application of the transfer 
function in conjunction with a fast-Fourier transform. In Fig.(a) is shown 1,2 c fluctua- 
tions in 6p/p at the present epoch for model B. The box is 128 Mpc wide assuming that 
the current Hobble parameter is H = 50 km/s/Mpc. In the right half of the box, 20 Auc- 
tuations are suppressed thus producing wall-like structures. This scenario is in qualitative 
agreement with some features of the CfA slice of the Universe. In Fig.(b), the histogram 
for 6p/p (solid cone) deviates slightly from a Gaussian (broken curve). 

Fig.(lO): For model B, contour plots in the gravitational potential *a are shown at the 
present epoch for the same slice as Fig.(Sa). The broken curves are -1, 0 Q deviations from 
the mean of the 2-D slice whereas the solid curves are lu fluctuations. There are no f2u 
deviations as can be seen in the histogram of(b). In this model, non-Gaussian fluctuations 
are more apparent in the distribution of the gravitational potential than in 6p/p, Fig.(Sb). 

Fig.(ll): For model B, the present power spectra in +a and bp/p (Figs.(9,10)) are cal- 
culated by multiplying the primordial power spectrum in c given in Fig.(G) by the CDM 
transfer function. k = 1 corresponds to a wavelength at the present epoch of 128 Mpc. 
The final shape is essentialIy the same aa CDM with Gaussian statistics. Scale-invariant 
non-Gaussian fluctuations do not add extra power. 

Fig.(lZ): (a) For completeness, I show the I,2 4 contour levels of 6p/p for model C at 
the present epoch The box ban a width of 128 Mpc. Since the -2, 1, 0 0 contours are 
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not drawn, the contour levels shown are somewhat similar to those of CDM with Gaussian 
fluctuations. Galaxies would presumably correspond to the high density peaks which appear 
in tight groups of islands. (b) The histogram of 6p/p in the slice is shown; -2~ fluctuations 
are highly suppressed. 

Fig.(U): For model C, contour plots in +a are shown in (a) at the present epoch for the 
same slice as Fig.(l2a). The broken curves are -1, 0 0 deviations whereas the solid curves 
are 1,2 o fluctuations. There are no -20 deviations as can be seen in the histogram of(b). 
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